| 5,857 | 0 | 10 |
| 下载次数 | 被引频次 | 阅读次数 |
生成式人工智能的快速发展为图书馆的智慧化转型提供了新动能。文章着力探讨国产开源大模型DeepSeek在图书馆智慧化服务场景中的技术适配性和功能进阶作用,认为DeepSeek凭借多模态架构、参数规模与训练策略的效能平衡,能有效优化图书馆的智能问答系统、多模态资源管理及知识组织工具自动化能力,实现元数据智能提取、参考咨询服务升级与语义检索精准化,进而拓展图书馆的社会化价值。研究认为,未来需进一步优化AI使用网络环境、制定AI使用规范并防范AI幻觉风险,以进一步推动生成式人工智能与图书馆智慧化服务的深度融合。
Abstract:The rapid development of generative artificial intelligence has provided new momentum for the intelligent transformation of libraries. This article focuses on exploring the technical adaptability and functional advancement of the domestically developed open-source large model DeepSeek in smart library service scenarios. It suggests that DeepSeek, with its multimodal architecture, balanced parameter scale, and training strategies, can effectively optimize intelligent questionand-answer systems, multimodal resource management, and automation capabilities of knowledge organization tools in libraries. This enables intelligent metadata extraction, upgraded reference and consultation services, and more precise semantic search, thereby expanding the social value of libraries. The study also emphasizes that future efforts should focus on further optimizing AI usage environments, establishing AI usage standards, and preventing AI hallucination risks to promote deeper integration of generative AI with smart library services.
[1]施曼.人工智能、新质生产力与产业链供应链安全[J].新疆社会科学,2024(6):54—64.
[2]尹克寒.Chat GPT的发展对情报信息工作的影响及启示[J].图书馆理论与实践,2023(3):15—22.
[3]中华网.Deep Seek彻底爆发性能卓越成本低[EB/OL].[2025—02—22].https://3g.china.com/act/news/10000169/20250126/47913664.html.
[4] MANNHEIMER S,BOND N,YOUNG S W H,et al.Responsible AI practice in libraries and archives:A review of the literature[J].Information Technology&Libraries,2024,43(3).
[5] CSDN博客.Deep Seek-R1,Deep Seek-V3,Deep Seek-VL,Deep Seek-V2,Deep Seek-R1-Zero各个模型区别[EB/OL].[2025—02—22].https://blog.csdn.net/ccsss22/article/details/145395875.
[6] ADAMS NICK.From Static Archive to Research-Ready Database.Library of Congress:IMPACT symposium[EB/OL].[2025—02—22].https://youtu.be/Ap5NHCujAVA.
[7] FRIEDMAN M,FORD C,ELINGS PI M,et al.Using AI/Machine learning to extract data from Japanese American confinement records[C]//Proceedings of the 2021 IEEE International Conference on Big Data(Big Data).Orlando,FL,USA:IEEE,2021:2210—2219.
[8] SCHUERKAMP R,BARRETT J,BALES A,et al.Enabling newinteractions with library digital collections:Automatic gender recognition in historical postcards via deep learning[J].The Journal of Academic Librarianship,2023,49(4):102736.
[9] HARDEN M,MARTINEZ-MONTAVON A M,NARLOCK M.A mismatched group of items that I would not find particularly interesting:Challenges and opportunities with digital exhibits and collections labels[J].Evidence Based Library and Information Practice,2022,17(4):71—121.
[10]裴文斌,王海龙,柳林,等.音乐信息检索下的乐器识别综述[J].计算机工程与应用,2023,59(2):34—47.
[11] WALKER J,COLEMAN J.Using machine learning to predict chat difficulty[J].College&Research Libraries,2021,82(5):683.
[12] RODRIGUEZ S,MUNE C.Uncoding library chatbots:Deploying a new virtual reference tool at the San Jose State University library[J].Reference Services Review,2022,50(3/4):392—405.
[13] SHI Y,CHUNDONG L,LUO L.Impact of the COVID-19 pandemic on Chinese college students’information behavior and library needs:A qualitative study[J].The Library Quarterly,2021,91(2):150—171.
[14]曹茹烨,曹树金.Chat GPT完成知识组织任务的效果及启示[J].情报资料工作,2023,44(5):18—27.
[15]李光助.Chat GPT对高校图书馆的影响:业务、服务及发展路径[J].图书馆理论与实践,2023(6):123—128.
[16]吴丹,孙国烨.生成式智能搜索结果可信度研究[J].中国图书馆学报,2023,49(6):51—67.
[17]魏明媛,罗坤明,汤明,等.大语言模型(LLM)嵌入智慧图书馆场景化服务的应用研究[J].图书馆理论与实践,2025(1):83—94.
[18]孙晓宁,景雨田,刘思琦,等.对话式搜索:人智交互情境下主导未来的信息检索新范式[J].情报理论与实践,2024,47(10):61—73.
[19]刘佼.Chat GPT赋能图书馆智慧转型:机遇、挑战和路径[J].黄河科技学院学报,2024,26(12):93—100.
[20]米加宁,董昌其.大模型时代:知识的生成式“涌现”[J].学海,2024(1):81—96,214—215.
[21]刘智锋,吴亚平,王继民.人工智能生成内容技术对知识生产与传播的影响[J].情报杂志,2023,42(7):123—130.
[22]袁一鸣,陶成煦,贺超城,等.人智交互情境下的知识转化模型:内涵深化及外延拓展[J].情报理论与实践,2024,47(6):76—84.
[23]雷忠恺.促进数字包容:数智图书馆的新使命[J].图书馆理论与实践,2025(1):42—46.
[24]董鹏,许润国.智慧城市建设理念的价值分异与选择机制[J].中国行政管理,2024,40(10):53—60.
[25] SIMONOFSKI A,ASENSIO E S,DE SMEDT J,et al.Citizen participation in smart cities:Evaluation framework proposal[C]//Proceedings of the 19th IEEE Conference on Business Informatics(CBI).Thessaloniki,Greece:IEEE,2017:227—236.
[26] BUYANNEMEKH B,GASCO-HERNANDEZ M,GIL-GARCIA J R.Fostering smart citizens:The role of public libraries in smart city development[J].Sustainability,2024,16(5):1750.
[27] KHAN A U,MA Z,LI M,et al.Beyond bookshelves,how 5/6G technology will reshape libraries:Two-stage SEM and SF-AHP analysis[J].Technology in Society,2024,78:102629.
[28]熊远明.围绕国家文化数字化战略积极推进全国智慧图书馆体系建设[J].中国图书馆学报,2022,48(4):5—9.
[29]陈雅楠,张强,高颖,等.《图书馆响应人工智能的战略对策》解读及战略地图构想[J].图书情报工作,2024,68(23):52—62.
[30] HUANG Y,COX A M,COX J.Artificial Intelligence in academic library strategy in the United Kingdom and the Mainland of China[J].The Journal of Academic Librarianship,2023,49(6):102772.
[31]李卫姣,蔡迎春,王润凝.AI驱动下大学图书馆的角色重塑与战略整合[J].图书馆杂志,2024,43(11):50—60.
[32]文清蔓.“80后死亡率突破5.2%”系谣言,严防AI“幻觉”误导公众认知[EB/OL].[2025—02—22].https://new.qq.com/rain/a/20250221A07T6U00.
[33]陈袁.全球AI风险事件增近五成约2/3为技术衍生安全风险[EB/OL].[2025—02—22]. https://new.qq.com/rain/a/20250221A0179W00.
[34] BUBECK S,CHANDRASEKARAN V,ELDAN R,et al.Sparks of artificial general intelligence:Early experiments with gpt-4[J/OL].ar Xiv:2303.12712,2023—03—27[2025—08—05].https://arxiv.orglabs12303.12712.
[35] BANG Y,CAHYAWIJAYA S,LEE N,et al.A multitask,multilingual,multimodal evaluation of chatgpt on reasoning, hallucination, and interactivity[J/OL].ar Xiv:2302.04023, 2023—02—08[2025—08—05].https://arxiv.orglabs12302.04023.
[36]柯平.面向“十五五”规划的智慧图书馆建设[J].图书馆理论与实践,2025(2):1—13.
基本信息:
DOI:10.14064/j.cnki.issn1005-8214.20250228.001
中图分类号:G250.7;G252;TP18
引用信息:
[1]罗坤明,李子晟,张磊,等.国产开源大模型赋能图书馆智慧化服务功能——以DeepSeek为例[J].图书馆理论与实践,2025,No.277(05):86-96.DOI:10.14064/j.cnki.issn1005-8214.20250228.001.
基金信息: